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Total synthesis of racemosol and de-O-methylracemosol,
potent cyclooxygenase (COX) inhibitors and antimalarial agents
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Abstract—The total synthesis of antimalarial and cyclooxygenase inhibitors, racemosol and de-O-methylracemosol, is described.
The key steps involved the lateral lithiation reaction of ortho-methyl tolulate and the pyran formation via a tandem demethyla-
tion–cyclization reaction.
� 2005 Elsevier Ltd. All rights reserved.
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Scheme 1. Retrosynthetic analysis of 1 and 2.
Racemosol (1) and de-O-methylracemosol (2), were iso-
lated from the roots of Bauhinia malabarica Roxb, and
possessed in vitro antimalarial activity.1 Recently we
have discovered that 1 and 2 are potent cyclooxygenase
(COX) inhibitors, showing comparable activity to that
of the standard drug, aspirin.2 Both racemosol (1) and
de-O-methylracemosol (2) were also isolated from B.
racemosa3 and B. rufescens.4 A biosynthetic pathway
for these tetracyclic substances (Fig. 1), involving
stilbene related compounds as precursors, was proposed
by Hostettmann and co-workers.4

The interesting biological activities of 1 and 2, as well as
the limited amounts obtained from natural sources,
prompted us to investigate their total synthesis. The
retro synthesis of racemosol (1) and de-O-methylrace-
mosol (2) is outlined retrosynthetically in Scheme 1. On
the basis of deprotection and cyclization, the tetracyclic
skeleton of 1, 2 could be obtained from intermediate 3.
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2005.11.016

* Corresponding author. Tel.: +66 2 201 5134; fax: +66 2 354 7151;
e-mail: scsrv@mahidol.ac.th

O

HO OH

OR

racemosol 1 R = Me
de-O-methylracemosol 2 R = H

2

6 7

1112

4

8

9

10

5

1

12b

Figure 1. Structures for 1 and 2.
The key intermediate 3 could be prepared from tricyclic
ketone 4 using Grignard reaction. The required tricyclic
ketone 4 can arise from the intramolecular Friedel–
Crafts acylation5 of ester 5. The dihydrostilbene ester
5 could be constructed through C–C bond formation
using the lateral lithiation reaction6 of 2,4-dihydroxy-
3,6-dimethylbenzoic acid (6) and 2,3-dimethoxybenzyl
bromide (7).

The commercially available 2,4-dihydroxy-3,6-dimethyl-
benzoic acid (6) was methylated (K2CO3/MeI) prior to
lithiation. The methoxy protected precursor 8 was trea-
ted with 1.2 equiv LDA at �78 �C and then trapped
with 2,3-dimethoxybenzyl bromide (7)7 to provide
product 5. The regiospecific deprotonation of the
ortho-methyl toluate group led to the desired alkylation
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Scheme 2. Reagents and conditions: (a) K2CO3, DMF, MeI (96%); (b) 1.2 equiv LDA, 2,3-dimethoxybenzyl bromide (7), THF, �78 �C (67%); (c)
PPA (92%); (d) 1.0 M BBr3, CH2Cl2, �78 �C (92%); (e) BnBr, K2CO3, reflux acetone (95%); (f) b-methallyl magnesium chloride, THF, �20 �C to rt
(93%); (g) concd HCl/EtOH, reflux 24 h (74%); (h) H2/Pd–C (98%).
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Scheme 3. Reagents and conditions: (a) AlCl3/EtSH, CH2Cl2, 0 �C to
rt (84%); (b) H2/Pd–C (95%); (c) K2CO3, DMF, MeI (50%).
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product 58 (67%) and the self-coupled isocoumarin 99

(30%). The formation of the isocoumarin from ortho-
toluate coupling has previously been reported10 and in
this case it was suppressed by slow addition of benzyl
bromide 7 to the anion intermediate of 8. Attempts were
made to protect the C–O bond with bulky benzyloxy
and isopropoxy group to decrease the self-coupled prod-
uct, however a poor yield of the desired product was ob-
tained. Intramolecular Friedel–Crafts acylation5 of ester
5 was performed directly in polyphosphoric acid to pro-
vide the seven-membered tricyclic ketone 411 (92%). The
conversion of the ester to the carboxylic acid in this case
is no longer required. Grignard reaction of 4 with b-
methallyl magnesium chloride in toluene:THF (10:1) at
�20 �C gave the corresponding alcohol 3a12 (93%).
Unfortunately, demethylation of 3a with BBr3 prior to
cyclization met with failure. An alternative route using
a benzyloxy protecting group was carried out. Selective
demethylation of 4 with 1.0 M BBr3 at �78 �C in
CH2Cl2 and reprotection of the hydroxy group of 1013

with benzylbromide provided the benzyloxy product
1114 in good yield. Grignard reaction of 11 gave the cor-
responding alcohol 3b15 (75%). Debenzylation, cycliza-
tion and dehydration of compound 3b with concd HCl
in refluxing ethanol provided the desired tetracycle
1216 (74%). Hydrogenation of compound 12 using H2/
Pd–C afforded compound 1317 in excellent yield. This
route should enable us to construct racemosol (1) and
de-O-methylracemosol (2) as well as several analogues
(Scheme 2).

In addition, a more efficient method that led to pyran
formation via a tandem demethylation–cyclization18

was applied to our system. Indeed, in the presence of
AlCl3/EtSH in CH2Cl2, compound 3a was smoothly
demethylated and cyclized to deliver a tetracyclic prod-
uct 1419 (84%). To our delight, this method had the
advantage of three reactions namely demethylation,
cyclization and dehydration in one pot. The natural
product de-O-methylracemosol (2)20 could be obtained
from hydrogenation (H2/Pd–C) of 14. Racemosol (1)21

was obtained as the major product from methylation
of 2, together with other methylated products, c–9 meth-
oxy (15) and dimethoxy (16),2 as shown in Scheme 3.
The synthetic racemosol (1) and de-O-methylracemosol
(2) were characterized by spectroscopic techniques and
they were identical in all respects to natural products 1
and 2.1,3,4

In conclusion, the bioactive natural products de-O-
methylracemosol (2) and racemosol (1) were successfully
synthesized in 44% and 22% overall yields from the com-
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mercially available 2,4-dihydroxy-3,6-dimethyl benzoic
acid (6). Structure modification as well as the asymmet-
ric synthesis of racemosol and related compounds are
under investigation.
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8.2, 22.1, 23.3, 30.3, 32.1, 34.0, 38.1, 55.9, 73.3, 107.4,
109.1, 109.3, 114.6, 115.6, 128.4, 135.9, 137.0, 141.7, 145.0,
152.1, 152.4; IR (KBr): mmax 3423, 2973, 2928, 1594, 1492,
1459, 1442, 1273, 1107, 1089 cm�1; 341 ([M+H]+, 12), 340
(M+, 53), 323 (16), 285 (28), 284 (100). Anal. Calcd for
C21H24O4: C, 74.09; H, 7.11. Found: C, 74.11; H, 7.40.
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